Sun. Dec 8th, 2019

Pabulum IAS

Delhi Best ias coaching

Material with properties suitable for quantum optoelectronics developed by IIT Madras

2 min read
iit-madras-develops-material-with-properties-suitable-for-quantum-optoelectronics

Material with properties suitable for quantum optoelectronics developed by IIT Madras

Context of Material with properties suitable for quantum optoelectronics :

Materials such as tungsten diselenide (WSe2) and molybdenum diselenide are being studied keenly for their optoelectronic properties – a combination of optics and electronics.

Why in news:

A key property of these materials is photoluminescence, in which the material absorbs light and re-emits it as a spectrum. Researchers from IIT Madras have found a way of enhancing this property about 30 times in tungsten diselenide, by drop-casting gold nanoparticles on to a two-dimensional film.

Method:

When an electron jumps from the valence to the conduction band, it leaves behind a shadow called a “hole.” The electron in the conduction band and the hole in the valence band can bind together and form a composite object (pseudo particle) known as an exciton. Photoluminescence in tungsten selenide is a result of such excitons.

How Material with properties suitable for quantum optoelectronics works?

There can be two ways in which an exciton can form – when the spins of the component electron and hole are opposite to each other and when they are aligned in the same direction.

The former is called a bright exciton and the latter, a dark exciton. Because their spins are opposite, the electron and hole forming the bright exciton can recombine, giving out a quantum of light in the process. Such a simple way of recombining does not exist for the dark excitons. Since there, the spin of the electron and the hole are parallel, their recombination is discouraged by the rule of conservation of angular momentum.

Hence the dark excitons are longer lived than the bright excitons. The dark excitons need an external influence to help them recombine. In their work, the IIT Madras researchers find exactly such an external influence.

Findings:

When they drop-cast gold nanoparticles on the surface of the monolayer tungsten diselenide, they find that the dark excitons couple to the surface fields generated and recombine to give off light quanta.

Thus, the dark excitons are “brightened” with the help of the gold nanoparticles.

Benefits:

Consisting of practically one layer of atoms, these materials are two-dimensional in structure. Photoluminescence properties can be used in various devices such as quantum LEDs which can be used in communication and computation. “The most challenging aspect of this study was the controlled photoluminescence measurement of these materials from room temperature to 100 K.

source: the Hindu

Leave a Reply

avatar
  Subscribe  
Notify of
0 Shares